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Phase diagram of a hard-sphere system in a quenched random potential: A numerical study
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We report numerical results for the phase diagram in the density-disorder plane of a hard-sphere system in
the presence of quenched, random, pinning disorder. Local minima of a discretized version of the
Ramakrishnan-Yussouff free energy functional are located numerically and their relative stability is studied as
a function of the density and the strength of disorder. Regions in the phase diagram corresponding to liquid,
glassy, and nearly crystalline states are mapped out, and the nature of the transitions is determined. The liquid
to glass transition changes from first to second order as the strength of the disorder is increased. For weak
disorder, the system undergoes a first-order crystallization transition as the density is increased. Beyond a
critical value of the disorder strength, this transition is replaced by a continuous glass transition. Our numerical
results are compared with those of analytical work on the same system. Implications of our results for the
field-temperature phase diagram of type-Il superconductors are discussed.

PACS numbgs): 64.70.Pf, 64.60.Ak, 64.60.Cn

[. INTRODUCTION namically distinct from the high-temperature liquid. An
interesting possibility is that it is analogous to the glassy
The equilibrium phase diagram of a classical system ophase obtained by supercooling a liquid below the structural
interacting particles in a quenched, random, pinning potentiaglass transition temperature in the absence of external
is an active and important subject of reseafth Systems quenched disordéB]. If this is so, then the phase diagram of
such as vortices in the mixed phase of highsuperconduct- such systems would contain three phases: a Bragg glass
ors[2], fluids confined in porous medj&], magnetic bubble phase obtained at low temperature and weak disorder, an
arrays[4], and Wigner crystal§5] provide physical realiza- amorphous(without quasi-long-range translational order
tions of a collection of interacting classical objects in theglassy phase at low temperatures and strong disorder, and a
presence of an external, time-independent, random potentiakeakly inhomogeneougbecause of the random potential
In the absence of such a potential, systems of this kind arkquid phase at high temperatures. The glassy phase would be
expected to crystallize at low temperatures. Several yearthermodynamically stable in these systems. This is different
ago, Larkin[6] showed that arbitrarily small amounts of ran- from the situation in the absence of external disorder where
dom pinning disorder destroy long-range translational ordethe crystalline state is the true equilibrium state near the
in all dimensionsd<<4. However, recent theoretical studies structural glass transition and both the supercooled liquid
[7,8] suggest that weak disorder distorts the crystalline statand the glass are metastable. Thus, the presence of external
only slightly, leading to a phase with perfect topological or- disorder may lead to the possibility of occurrence of a true,
der and logarithmic fluctuations of the relevant displacementhermodynamically stable, glassy phase.
field. This phase, with quasi-long-range translational order The phase diagrai®] in the temperatureT)—magnetic
and power-law Bragg peaks in the structure factor, is called &ield (H) plane of layered, highly anisotropic, type-Il super-
“Bragg glass” [8]. The transition point between a Bragg conductors such as Br,CaCyOg in a magnetic field per-
glass and the high-temperature liquid phase is likely to begendicular to the layers is a credible candidate to exhibit
shifted with increasing disorder, but the transition is believedhese three phases. For a wide range of values, dfie flux
to remain first order as long as the disorder is weak. A queslines in these materials may be regarded as columns of inter-
tion of obvious interest is how this transition temperature andacting “pancake” vortice$2] residing on the layers, and the
the nature of the transition depend on the strength of th@roperties of the mixed phase may be described in terms of
random potential. the classical statistical mechanics of these pointlike objects.
As the strength of the disorder is increased, the Braggit low enough fields, a flux-lattice melting transition sepa-
glass phase is expected to undergo a transition to a topologiates a nearly crystalline state of the flux lines from a disor-
cally disordered amorphous phase with only short-range comered “vortex liquid” state. The first-order character of this
relations. It is not yet clear whether this phase is thermodytransition has been carefully documenfdd]. WhenH is
increased, the transition becomes continds11], and the
nearly crystalline state appears to be replaced by a “vortex
*Also at the Condensed Matter Theory Unit, Jawaharlal Nehruglass” [12] that has glassy properties such as non-Ohmic
Center for Advanced Scientific Research, Bangalore 560064, Indiccurrent-voltage characteristi¢43]. It is generally assumed
Electronic address: cdgupta@physics.iisc.ernet.in [12] that the vortex glass phase owes its existence to the
TElectronic address: otvalls@tc.umn.edu presence of pointlike pinning disorder. Observation of Bragg
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peaks in neutron scattering experimeptd] confirms that Using these numerical methods we investigate how the
the phase at lowd andT is a Bragg glass. As the strength of uniform liquid, crystalline solid, and glassy minima of the
the disorder is increased, either indirectly by increadihg free energy in the absence of the random potential evolve as
(which is believed to increadd 1] the effective strength of the strength of this potential is increased. We also examine
the disorder, or directly by increasing the amount of sample the dependence of the free energy and the density structure
defects[15], the Bragg glass phase changes over to the vorof these minima on the strength of the disorder. In this pic-
tex glass. The latter is separated from the liquid by a confure, a transition from one phase to another is signaled by the
tinuous transition[16]. Thus, this phase diagram suggestsC"oSSing of the free energies of the corresponding minima of
that the first-order liquid-to-crystal transition in a three- the free energy. By monitoring where these crossings occur
dimensional system of pointlike objects may be driven by the?S the density and the strength of the disorder are varied, we
pinning disorder into a continuous liquid-to-glass transition.2'© able tp map out _the pha_se d'agram in the der_13|_ty-d|sorder
The formation of a glassy phase at strong disorder Wag)lane. This phase diagram is qualitatively very similar to the

recently investigated analyticallsL7] in a study of the phase one o_btamed in the analytic wofk7]. For wgak d|sor.der we
diagram of a system of hard spheres in a random pinnin nd, in the commensurate case as described earlier where a

potential. This work used a combination of two “mean- rystalline minimum exists, a first-order liquid-to-crystal

field"-type approaches based on the “replicated liquid for- fransition that moves to higher density as the disorder is

e . ; d. In the metastable ‘“supercompressed” regime
malism” [3,18,19: the replica method20] was used for Increase Lo ; S
treating the effects of quenched disorder, and the hypernette(He" at a density higher than the value at which equilibrium

chain approximatiof21] to calculate the equilibrium corre- ](c:.r{jst.alhzﬁ\tlon takesi. plgé:? fo: thetcomrpensgrrr?ted)casci ¢
lation functions in the liquid in the presence of the pinning Ind I all cases a fiquid-to-glass transition. The density &

hich this transition occurs decreasg®ry slowly for the

potential. These correlation functions were then the input iriN " ¢ tudied. which i ¢ q
a replicated density functiondll8] of the Ramakrishnan- argest systems studied, which areé incommensurate, -an
more rapidly for the smaller, commensurate sysbteassthe

Yussouff (RY) form [22] from which the location of the disorder is increased. The nature of this glass transition de-

freezing transition of the liquid into a nearly crystalline . R

(Bragg glassphase was obtained. The possibility of a liquid- pheng_s or; the strenkgtg ct’f.tthﬁ d|sordter. Itis férSt ;rdzr whedn

to-glass transition was investigated using the phenomen(;-e ISorder 1S weak, but It changes to second order beyond a
certain critical value of the disorder strength. For the com-

logical approach of Meard and Paris[19]. The resulting mensurate case, the crystallization line crosses the glass tran-
[17] phase diagram in the density-disorder pléhe density, psition at or very near the same critical value of the disorder

rather than the temperature, is the appropriate control para )
P bprop P strength, so that the system at stronger disorder then under-

eter for a hard-sphere systgshows three phases: a nearly liquid-to-al " itiofinstead of the liquid-t
crystalline Bragg glass, an amorphous glassy phase, andgzge‘;’ Iat IqUI_t_- 0'? assd franS| |0kr:js_ eag o thedlqw' -to-
low-density liquid. It is consistent with the expectatidrom crystal transition found for weak disordeas the density is

earlier work[18] and the Lindemann criteriof23]) that the increased. The continuous nature of the glass transition in the
large disorder regime is in contrast with the first-order tran-

density at which the Bragg glass to liquid transition qccuriﬁjtion from the liquid to a crystalline or glassy stétiepend-
ing on the commensurabilityat small values of the disorder
trength. Thus, this work supports the prediction that the

st-order liquid-to-crystal(Bragg glasy transition should

is increased. The first-order crystallization transition is re-
placed by a continuous glass transition as the disorder
strength is increased above a threshold value. This pha ; o9 >
diagram is, thus, qualitatively similar to that proposed forchange over to a continuous I|q_U|Q—to—gIass transition a;lthe
some layered type-Il superconductors if, as noted above, th%trength of the pinning disorder is increased beyond a critical

S : value
gsgﬁg)t/hiyretzﬁleaﬁqe:grk])é/tiihfe;etidemperatu'feand the disorder The rest of the paper is organized as follows. In Sec. Il,

Here, we report the results of a numerical investigation ofVe define the model studied here_ and outline fche ”“me“%."
the phase diagram of the same system: a hard-sphere fluid %ocgdure_ used. The_resglts obtained for the d|ffgrent. transi-
the presence of a random pinning potential with short-rang :T)nsllne.s |nl\t/he den.sny—dlsorder pla?e are dgscrlbeld n %ec.
spatial correlations. We use direct numerical minimization to, - ection . contains a summary of our main results and a
study the effects of the presence of a random potential on thf!e,r:‘W concluding remarks.
minima of a discretized version of the RY free-energy func-
tional for the hard-sphere system. In the absence of external
disorder, this model free-energy functional exhibits, at suffi-
ciently high densities, a large number of “glassy” local A. The free-energy functional
minima [24] characterized by inhomogeneous but aperiodic
density distributions. A global minimum corresponding to fre
the crystalline solid is also found at high densities if the
sample size and the discretization scale are commensuraﬁé
with the crystal structure. We have carried out extensive nu-
merical investigations of the resulting free-energy landscape Flpl=Faypl+Fdpl, (2.2
[25-2§ in the absence of disorder. In this study, we develop
similar numerical methods to find the location and structure
of the local minima of the same model free energy with thewhere the first term in the right-hand side is the RY free-
addition of a time-independent, random, one-body potentialenergy functional[22] for hard spheres in the absence of

Il. METHODS

As discussed in the Introduction, our starting point is the
e energy as a functional of the time-averaged local density
r) at each point. We write this free energy functional in

e form
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disorder, and the second is the contribution arising from theionless strength of the disorder. In terms of these quantities,
presence of a quenched random potential. Thus, we have the dimensionless free energy of our discretized system has
the form

BFRY[P]:f dr{p(r)In[p(r)/po]—dp(r)}

1 BFZZ {piln(pilp,)—(pi—p )}

—Ef drfdr’C(|r—r’|)5p(r)5p(r’). .
(2.2 3 2. 2 Cij(Pi_P/)(Pj_P/)+2i Vilpi—p,),

Here, we have definedp(r)=p(r) —po as the deviation of (2.5

p(r) from pq, the density of the uniform liquid, and taken the

zero of the free energy at its uniform liquid value. In Eg. where the sums are over all the sites of the computational
(2.2, p=1/(kgT), T is the temperature and the function mesh,p,=poh® andCj; is the discretized form of the direct
C(r) is the direct pair correlation functiof21] of the uni-  pair correlation funct|orC(r) of the uniform liquid.

form liquid at densitypo, which can be analytically ex-  The thermodynamics of hard spheres in the clean limit is
pressed in terms of the usual dlmenS|onIess density for hardetermined by the dimensionless density only. Our res-
spheres of diametesr, n*=p,0°®, by making use of the caling of the potentiaV/ by 3 [see Eq(2.4)] ensures thas

Percus-Yevick approximatiof21] for hard spheres: is now the only additional relevant variable. Our objective is
) to study the phase diagram of this system in thé,§)
C(r)=-— (1+27) (1+0.57r%) plane. In our mean-field description, different phases are rep-

resented by different minima of the free energy. If several
local minima of the free energy are simultaneously present,

(1+nl2)? 1 23 then the minimum with the lowest free energy represents the

K (1—n)* (r<1), (239 thermodynamically stable phase and the other local minima
correspond to metastable phases. A crossing of the free en-

C(r)=0 (r>1), (2.3p  ergies of two different minima signals a first-order phase

transition. The point where a minimum becomes locally un-
where 7 is the packing fractiony=(7/6)n*, and the dis- stable(i.e., changes from a true minimum to a saddle point
tancer is in units of o. This approximation is sufficiently or disappears altogethecorresponds to a mean-field spin-
accurate in the density ranges*(=1.0) considered in this 0dal point representing the limit of metastability of the cor-
paper. We write also responding phase. A merging of the transition point with the
spinodal points of the two phases signals a continuous phase
transition in this description. Thus, a study of how the
BFLp]= J drdp(r)Vy(r), (2.4 minima of the free energy of E42.5) evolve amn* andsare
changed is sufficient for mapping out the mean-field phase
whereV,(r) is an external potentigin dimensionless foron  diagram in the §*,s) plane.
representing the random, quenched disorder. We will assume Locating the minima of the free energy is a difficult nu-
thatV, has zero mean and short-range Gaussian correlatiomserical problem. The crystalline and glassy minima are
as detailed below. highly inhomogeneous with the values of the density vari-
In order to carry out numerical work, we discretize our ables{p;} ranging over more than 12 orders of magnitude.
system. We introduce for this purpose a simple cubic comAlso, the constraints;=0 for all i, must be satisfied for any
putational mesh of siz&® with periodic boundary condi- physical minimum. For these reasons, standard, numerically
tions. On the sites of this mesh, we define density variablesfficient minimization methods cannot be readily applied to
pi=p(r)h3, wherep(r;) is the density at sité andh the  this problem. We have used a numerical procedure general-
spacing of the computational mesh. It is known from previ-ized from that originally developed for the clean c&2d].
ous work[24,25 that in the absence of any random poten-This procedure works by changing the local density variables
tial, this discretized system crystallizes at sufficiently high{p;} in a way that ensures that these changes always decrease
densities if the quantitiel and L are commensurate with a the free energy. Given an initial configuration of the vari-
fcc structure with appropriate lattice spacing, whereas nables{p;}, this procedure finds, by constantly moving down-
crystalline state exists when the computational mesh is inhill on the free-energy surface in the multidimensional con-
commensurate with a fcc structure. Both commensurate aniiguration space spanned by thé variables{p;}, the local
incommensurate systems exhif#4—27 many glassyinho-  minimum whose basin of attraction contains the initial state.
mogeneous but aperiodiminima of the free energy at den- Thus, different local minima of the free energy can be lo-
sities higher than the value at which crystallization occurs incated by using this minimization procedure for different, ap-
commensurate samples. propriately chosen, initial configurations. While this proce-
To model the random potenti&(r), we introduce ran- dure is numerically stable and guaranteed to converge to a
dom variableqV;} defined at the sites of the computational local minimum, it is not very efficient, often requiring thou-
mesh. These variables are uncorrelated with one another, asdnds of iterations for convergence. For this reason, our
distributed according to a Gaussian probability distributionstudy is restricted to relatively small systems, few realiza-
with zero mean and varianse Thus,s represents the dimen- tions of the disorder and coarse discretization scales.
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As noted earlier, there are in our system three differenvalue of thep,; variables at the minimum, which gives addi-
kinds of free-energy minima: liquid, crystalline, and glassy.tional information about the inhomogeneity when contrasted
In the clean limit 6=0), it is easy to distinguish among ith p or its rescaled equivalemt,,=p(co/h)® at the mini-
them: the liquid minimum has uniform density, the crystal- mym.
line minimum has a periodic distribution of the density vari- |y addition to examining the transitions by looking Rt
ables, and a glassy minimum exhibits a strongly inhomogeg(r), and the density configurations, we also directly check
neous nonperiodic density distribution. This symmetry-base@n the stability of the corresponding minima. The stability of

distinction among minima of different kinds becomes lessg |ocal minimum requires that all the eigenvalues of the Hes-
clear when the external random potential is turned onsfor sjan matrixM whose elements are given by

#0, the density distribution in the liquid phase is not com-

pletely homogeneous, and the crystalline state is not strictly FP(BF) 1
periodic. Mjj=—————=—6;—Cj 2.7
Therefore we use here a procedure of “adiabatic continu- piopy Pi

ation” to distinguish among the liquid, crystalline, and g5,ated at the minimum must be positive. This matrix is
glassy minima in the presence of the disorder. This procejiticult to handle numerically if the minimum under consid-

cjure quks as fpllows: We start vyith a minimum of a par- g ation is strongly inhomogeneous, with some of fhis
ticular kind obtained as=0 for a given value oh”. There o1 lose to zero. In such cases, the, 1 the first term on
is no difficulty in generating the liquitand if appropriate the 5" jght hand side of Eq2.7) causes numerical difficulties.
crystalline configuration for the pure system. Glassy statesry avoid this problem, we consider instead the closely re-
ats=0 are easily obtainable also, in the right density rangesy;:aq matrixM’ whose elements are given by
by the procedures described in RE27]. Indeed, we have
used in many cases the same density configurations obtained P oM s
there that were available as computer files. After thus choos- Mij = VoMo = 3= Ciy Vo, 29
ing the initial state, we generate a set of uncorrelated rando
numbersr;,i=1,... L3 distributed according to a Gauss-
ian with unit variance. A “realization” of the random poten-
tial {V;} is obtained by multiplying these random numbers
by the strength parameter The initial s=0 minimum is
then “followed” to finite s by increasings in small stepsds
[29]. After each step increase, the minimization routine is
run to find the nearest local minimum, using the configuras,
tion at the minimum obtained at the previous step as th
starting point. During this process, the random variabigs
are held fixed—only the strength parametén increased in
steps ofés. By iterating this procedure, minima of different
kinds obtained as=0 for a certainn* are “followed” at
constant density to the desired valuesofVe use the terms
“liquid,” “crystalline,” and “glassy” to denote the contin-
ued s#0 minima obtained from &=0 minimum of the IIl. RESULTS
corresponding kind by using this continuation procedure A. General considerations: Phase diagram
without crossing transition lines. We will show that even at i i , ,
larger s the different kinds of minima have distinguishable  Consider first the previously studid@4,27,28 case of
structures. the disorder-free systens€ 0 line). There, only the uniform
Once a minimum of the desired kind is obtained at all9uid minimum is present at Iow densities. A% increases,
particular point in the if*,s) plane, the translational corre- @ crystalline minimum appears if the computational mesh is
lations at the minimum can be quantified by the two-pointcommensurate. When* is further increased, a density is

correlation functiong(r) of the density variable$p;}. This reached at 'WhiCh the crystal becomes thermodynamically
function is defined as stable, that is, its free energy becomes lower than that of the

liquid state. We will denote this density a4 . Regardless of
commensurability, many glassy minima appear as the den-
sity is further increased. We denote by the density at
which the first glassy minimum makes its appearance. Alter-
where the distancer is measured in units ofo, p natively, one may consider the evolution of the glassy
=3.p;/L3 is the average value of the, variables at the minima asn* is decreasedrom a large initial value, and
minimum under consideration, arfg(r)=1 if the separa- defineng as the density at which the last remaining glassy
tion between mesh poinisandj lies betweerr andr +Ar minimum becomes locally unstable and disappears: the free
(Ar is a suitably chosen bin sigeandf;;(r)=0 otherwise. ~€nergy _of this last rc_emaining glassy minimum crosses that of
This function represents the spatial correlation of tinee-  the liquid at a densityig that is somewhat higher tharf. .
averagedlocal density, and is distinct from thequal-time  This density corresponds to a liquid-to-glass transition. In the
two-point density correlation function that is often called commensurate case, the density is above the crystalliza-
g(r) in the literature. We also calculatg,,,, the maximum tion densityny , and the free energy of the crystalline mini-

'Wvaluated at the minimum under consideration. It is easy to
show that an instability of the minimum corresponds to the
vanishing of the smallest eigenvalieof this matrix. In our
numerical work, we calculate the value &f in order to
check whether the minimum under study becomes unstable
asn* or sis varied.

In our computations we have included the density range
m n*=0.65 ton*=0.95, and values o$ from zero to
Qbout two. These are sufficient to encompass the phenomena
we wish to study. We have used three lattice sizes,
=12,15, and 25. For the last two we have used an incom-
mensurate ratitn/ o= 1/4.6, whereas for the smallest lattice
we have taken the commensurate vahie=0.25.

, (2.6

g<r>=i§j pip;fij(r)/ ?gj fi(r)
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FIG. 1. The overall phase diagram of the hard-sphere system in s

the density (*)-disorder(s) plaglg, obtained for thé =12 com- FIG. 2. The overall phase diagram for the incommensurate case
mensurate sample, whem&é=no" is the dimensionless density and 4 sjzel = 25 as explained in the text. The diamonds represenAthe

s is the dimensionless strength of the random potential. The Mealine, the crosses the line, and the dashed line is tiline. Sample

ing of the line labels is explained in the text. The results shown are,or hars have also been included. They reflect sample-to-sample

averages over five realizations of the disorder. The error bars showpy iations for 6—12the number increases wit) realizations of the
are calculated from sample-to-sample variations. disorder.

mum is lower than that of the glassy minima. Thus, the glass
transition in the pure system occurs in a “supercompressedthe free energy is strongly negative evensatO, and its
regime where the crystalline state is the thermodynamicallyalue decreases further asncreases. The density distribu-
stable one. tion at such a glassy minimum is considerably more inhomo-
When we include the effects of the disordet>0), we  geneous than that of the liquid minimum continued to the
find yet another densityy , at which the liquid minimum same vaIue.ofs and it is less sensitive to the value g)ft_he
becomes locally unstablee., ceases to exist as a local mini- duenched disorder has less effect on a state that is inhomo-
mum of the free energyFor weak disorder, the value of ~ 9€neous and disordered to begin with.

is large (substantially higher thang) so that the four den- T_he_se trendz ifn the behavior IOf |iIQU_iI(|1| a{wdtggzlzsy minir_na
sitiesnj , ng , ng, andng are in decreasing order. Thus, we ﬁ]sstﬁem(;rﬁ ii)?relg?irgnzfirr?c?ge (Cr()aaégﬁlngz :i E (ZyG?XZPm'
have four(three in the incommensurate case where the crys- 9 ba . o)., qiz.9),
; ) . * . each minimum. In Fig. 3, we shog(r) computed for the
talline state is absenfunctions ny(s) with X=A,B,C,D liquid mini . _o d densitn* — h
representing precisely the four transitions or instabilities de-duld minimum at S|zeL—. S an . ensitn” =0.66. The
fined above, We denote the corresponding lines in tite) curves shown, in order of increasing value of the peak near
lane as the':A B,C,D lines. The deF':ermingtion of theeloca- r=1, correspond to increasing values s¢0.2,0.6,1.0,
Eon of these ’Iin’es' s one .of the main results of our work 1.4,1.8. There is a clearly visible increase in structure that
. X L ‘becomes more evident as the valuesoihcreases beyond
These results will be discussed below, but to fix ideas and to

make this discussion easier to follow, we show in Fig. 1

these four lines for the =12 commensurate case. There, the 18

general structure of the phase diagram, including the genere :,

shape of the four lines(s) can be seen. Similarly, we 16! ]
show in Fig. 2 the three linesy (s),X=A,B,C (from top to :

bottom found in the incommensuraté,=25 system. The 14} ]

similarities and differences between the commensurate an
incommensurate cases are discussed below. The lines in trg " i
phase diagram for the incommensurate 15 case are within
error bars the same as those shown in Fig. 2, so that th W
differences between Figs. 1 and 2 must be attributed to dif- 1t
ferent commensurability rather than to different sample size.
There are certain trends that can be easily discerned whe
one follows a free-energy minimum &ss increased at con-
stantn*. If one starts from the uniform liquid minimum at 0o 05 1 15 2 25 3 35 4 45
s=0 and a relatively small value af*, the free energy r
value at the minimuninitially zero according to our con-
vgnqon) _decreases steadily W,'th |ncreaS|BgThe d§n5|ty g(r) as defined in E¢(2.6) plotted as a function of the dimension-
distribution becomes progressively Iess_unlform, Witk less quantityr, defined as the distance in units @f for the liquid-
which ats=0 equals the average valye=p,, rising by like minimum at densityn* =0.66. The curves shown, in order of
more than one order of magnitudesasicreases from zero to increasing peak height at=1, correspond tos=0.2,0.6,1.0,
one. For a deep glassy state at a relatively large valug pf  1.4,1.8. The system size lis= 25.

FIG. 3. Liquid phase correlations. The pair correlation function
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FIG. 5. Discontinuities at thé line. In the main plot, the free
FIG. 4. The pair correlation functiog(r) for a glassy mini-  energy in dimensionless form forla=12 sample ¢=0.6) is plot-
mum. The curves shown correspond to the same valuéseoids  teq as a function of the dimensionless density variaBleA sharp
as in Fig. 3, but for a glassy minimum at =0.78 as discussed in  grop in the free energy is seen as the liquid minimum becomes
the text. unstable and the system switches to a glassy minimum. As shown in
the inset, this switch is also reflected in the discontinuity jrthe

unity. However, this level of structure is still quantitatively smallest eigenvalue of the matit’ defined in Eq(2.9)

different from that found for glassy minima at relatively high

densities. This can be seen by comparing Fig. 3 with Fig. 4ninimum obtained at the previous step as the starting point
where we plotg(r) for a*L—25 glassy minimum continued {4 |ocate the nearest minimum. The density configuration at
from s=0 tos=1.8 atn® =0.78. We see that thedepen-  {he minimum is analyzed and then used as the initial condi-
dence of the structure is now much weaker, and the heightg,, 1o study the next higher density.
of the peaks ar=0 and near =1 are much larger than | the initial stages of this process, the system remains in
those in Fig. 3. These results can be compared to those fouRde |iquidlike minimum, with little change in its properties.
in the replica calculaﬂo_rﬁl?]._To ma_ke contact with those However, am* reaches the value? (s), discontinuities are
results, oug(r) for the liquidlike minimum should be com- ¢,,n4 These are more prominent for the larger system sizes
pared with the functiom(r) of the replica symmetric sOlu- (rig 2 and particularly dramatic for values @ not too
tion, and ourg(r) for a glassy minimum with the function |5rge As the liquid minimum becomes unstable, the system
g,(r) of the replica-symmetry-broken solution. Although, nas 16 find some other nearby minimuour numerical mini-
due to differences in the modeling of the random potentialyization procedure is designed to converge only to stable
and effects of discretization in the present studgme of  |5cq) minima of the free energy Computationally, this is
these effects are discussed in Sec), ¥ detailed, quantita- peraided by a very sharp and obvious increase in the number
tive comparison of our results with those of REE7] is not ¢ jterations required by our numerical procedure to find the
possible, it is clear that the main features we have disCusS&fbe-energy minimum nearest to the starting configuration.
are qualitatively similar. . . This new minimum is invariably glassy, as one might expect,
The crystalline minimum obtained f@&=0 in commen- ~ gince a considerable number of glassy minima are close in
surate systems at sufficiently high densities shows very “ttl%onfiguration space to the liquidlike minimufi27]. The
change in structure as it is followed to nonzero values.of 51ye of the free energy at the minimum that the system has
Any effects of weak pinning disorder on the crystalline order g cneq drops sharply as th(s) value is crossed, because
may be too subtl¢6,8] to show up at the system sizes and g free energies of glassy minima are considerably lower in

discretization scales used here. the region of thef*,s) plane being considered. Also, every
N S measure of structure in the system increases abruptly, since,
B. Instability of the liquid minimum as discussed above in connection with Figs. 3 and 4, glassy
We consider first the line, that is, the density at which states are much more inhomogeneous than the liquidlike
the liquid minimum becomes locally unstable @i is in-  ones in this region of then(",s) plane.
creased from a low initial value, keepirsgfixed. This tran- An example of the behavior found is displayed in Figs. 5
sition is detected at any desired valuesaih the following ~ and 6. In the main part of Fig. 5, we show the evolution of
way. At a density previously determined to be well below thethe free energy as* is increased in steps of 0.001, keeping
value of n%(s) (this determination is easily performed by s fixed at 0.6 for aL=12 sample. One can clearly see that
trial and erro), one “follows” the s=0 liquid minimum, as BF varies little while the system remains in the liquid mini-
previously explained, to the value of the disorder strengtium and jumps abruptly as this minimum becomes unstable
being studied. The density configuration at this minimum isnearn=0.78. The behavior for the larger incommensurate
the initial condition. Then, one proceeds to increaseby ~ samples is quite similar, the main difference being that the
small intervals, thus moving up along a vertical line in thedrop in BF is much larger, and that the transition occurs, at
phase diagram. At every value of that is reached, we run this value ofs, atn3=0.84 for bothL=15 andL =25. The
our minimization routine(using the configuration at the value ofny can readily be found to very high precision and
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3 oS minimum which, if the starting minimum is chosen as de-
L=12,5-06 scribed below, turns out to be the liquidlike one. The density
25— p, at which this occurs defines the valuergf. Then, compar-
o " Pmax ipg 'the frge energy pf the glassy minimum W?th that of t_he
82 Qrax liquid minimum obtained for the same realization of the dis-

order, it is easy to determine the value mf—this is the
value ofn* at which the two free energies are equal.
O T e The determination of the appropriate starting glassy mini-
"OoorerororoemeTe mum is nontrivial. Glassy minima fas#0 are obtained by

pav ) pmax . gmax
N
- (&)

0571 continuation from those of the pure systes+(0). One may
-o-oo-ogoo-oot think that the best choice would be to take the glassy mini-
8.77 0.775 0.78 0.785 0.79 mum with the lowest free energy at the startimg (s) point.

n In practice, this is difficult to implement because an exhaus-

tive enumeration of all the glassy minima is computationally

FIG. 6. Example of how the system becomes more structured agary hard. The glassy minimum with the lowest free energy
theAline is crossed for ah =12 sample a8=0.6. The heighimax 4t 4 particular point in ther(*,s) plane does not in general
of the first finiter peak ing(r) increases discontinuously, the den- continue to have the lowest free energy as the valugs* of

sity nonuniformity represented by,,., e€xhibits a large increase, ands are changed. Also, in the pure system all the configu-

and the average densipy, shows a small discontinuous increase. rations obtained by apolving one of the symmetry operations
In order to be able to use a single vertical scale, we have displayecii y applying Y Yy op

pay rather tharp. All plotted quantities are dimensionle@ee text S;:E(?u?aci'n;]?;;zgorg?riimﬁ;h ;IC; ct)hc(:ao?reegi)lgqgot?)ﬁI%Lcj;;elmr%inni?‘rﬁ aa
it varies little as one averages over different realizations ofVith exactly the same free energy. Fer0, all these

the quenched disorder, for the sam&he error bars shown symmetry-related minima have to be conS|de_red separately
in Fig. 2 correspond to an average over 6-12 realization§ecause the presence of the random potential destroys the
(the larger number at larges). The results in Fig. 1 are Symmetries present in the pure limit. _

averages over five realizations. In the inset, we show that the We have not found a rigorous solution to this problem.
smallest eigenvalug of the matrixM’ defined in Eq.(2.8) Inste_ad, we first carried _out an exploratory s_tudy of how the
approaches zero @ approaches’ from below. This is as locations of theB andC lines in the phase diagram depend
would be expected—as noted in Sec. II, the instability of o0 the choice of the initial glassy minimum. The following
local minimum is signaled by the vanishing ®f In Fig. 6, choices were considered In our initial e_xploratl()a_): one of

we show three quantities that characterize the nature of thif'® [0W-lyings=0 glassy minima, continued to fini& (b)
density distribution at a minimum. These @, , the value  °€9inning with the same starting configuration atanand a

of the pair correlation functiog(r) at its first finiter maxi- specific reallzatlon. of the random Va”apl{%i}’ minimize
mum (nearr =1): p.a. the maximum value of the, ; and the random potential enerdyhe last term in Eq(2.5)] with

the dimensionless average density, defined in Sec. II. All  "€SPect to all symmetry operations of the computational

these quantities exhibit discontinuous changes as the systeW\eSh' This attempts to find the configuration th".’lt minimizes,
switches minima an* =n%=0.78. g,., remains close to among all the symmetry related ones, thg pontnbuqon Qf the
unity as long as the system stays inn'zﬁ)é liquid state, and therrﬁ"lndom potential to the free energy but it is not quite rigor-

jumps to a substantially larger value consistent with the in.0us because the minimization is performed using the values

creased short-range order present in a glassy minimum. Th%]c {p'} at the s=0 minimum and (c) the _gla_ssy minima to
. Which the system moves when the density is increased above
can also be seen from Figs. 3 and 4. The valug,f, also . . :
. . o . the A line, as discussed in Sec. Il B.
increases by a considerable amount, indicating the increase ; . :
inhomogeneity of a glassy minimum relative to the liquidlike The outcome of this study is that the locations of e
9 y glassy q andC lines in the (i*,s) plane are not sensitive to the choice

one. The small increase in the valuemf, reflects that the . " .
of the glassy minimum as long as it is one of the low-lying

{ahvae;r:??hgel?qsl;ti)élitean?ilri;sgmm|n|mum is slightly higher thanminima. (Even when we have deliberately or accidentally

The behavior discussed above changes Bsincreased. chosen a “wrong,” non-low-lying minimum, we have found
The change occurs near1 for L=12, and at somewhat that the system often spontaneously makes a glass-to-glass

) . transition[30] to a low-lying minimum as one decreas#s
largers for the other system sizes, as tAeB,C lines come bove theB line)) The variation of the values oft andn®
very close to one another. The results obtained in the Iargel"Jl . " g > B ¢

: : ; for different choices of the glassy minimum is comparable to
s regime are described in Sec. Il C. . .
the uncertainty of these valug¢shown by the error bars in
Figs. 1 and 2arising from sample-to-sample variations. The
results described below were obtain@ohless otherwise in-
dicated from runs in which a low-lying glassy minimum
To find theB andC lines, we start with a carefully chosen obtained from continuation of one at=0 was taken to be
glassy configuration at a relatively higit and fixeds, and  the initial state for the density-lowering run.
then follow this configuration to lower densities by decreas- For relatively small values of, the A, B, andC lines are
ing n* in small steps §n* =0.001), keeping the value af  well separated from one another and the signatures o€the
unchanged. This is continued until the minimum becomesnstability are very easy to detect: they are similar to the
unstable and the minimization routine converges to a newdliscontinuities shown in Figs. 5 and 6. However, as the value

C. Instability of glassy minima and the liquid-to-glass
transition
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of s is increased, these three lines begin to approach each -5 _ -
other. As shown in Figs. 1 and 2, the separation between — Increasing n
lines A and B decreases rather rapidly with increasisg 55t ., & Decreasing n

while the separation between linBsand C decreases more
slowly. Finally, nears=1, these three lines appear to merge
with one another for th& =12 system. Fot. =25 (and also

for L=15), the separation between them does not exceed the
combined error bars, but separ&andC transitions can be
detected in mostnot all) realizations of the disorder, as ex-
plained in detail below. At larges, it becomes increasingly
difficult to resolve these three lines. Since linasand C

represent, respectively, the limits of stability of the liquid il [ FENER——

and glassy minima and linB corresponds to the first-order o ‘”" L
liquid-to-glass transition, a merging of these three lines sug- '8_71 0.7 0.73 0.74
gests that this transition becomes continuousiasncreased n*

beyond a “tricritical” value that would be close to unity for
the L=12 commensurate sample and somewhat larger for g, 7. Hysteresis and discontinuities across the liquid-to-glass
the incommensurate samples. Another possibility is that th@ansition at small values af In the main plot, the dimensionless
first-order liquid-to-glass transition disappears beyond &ree energy of the stable minimum is plotted vs density as one
critical point nears=1. cycles across thA, B, andC lines as explained in the text. Hyster-

To examine the behavior in this region more closely, weesis is clearly observed. In the inset, the quandity, is shown.
have carried out several numerical experiments in which th&he results shown are at 0.8 for a commensurate=12 system,
value of n* is “cycled” through the liquid-to-glass transi- but the same behavior is found in this rangesdbr incommensu-
tion, keepings fixed at values close to unity. In this way, the rate systems.
three lines are detected in the same “run.” These numerical
experiments are similar to simulations of hysteresis in magh* =0.706 for both increasing* and decreasing* runs,
netic phase transitions. We start with the liquid minimum atand the results for the two runs are nearly identical. Given
a low value ofn* (below lineC), and increas@* in small  the rounding off errors associated with the numerical proce-
steps, keeping fixed. The liquid minimum is thus followed dures we use, the small differences between the increasing-
to higher densities until it undergoes a rapid change signalin§* and decreasing* values ofg,,, are likely to be insig-

a possible instability. The process of increasiﬁ‘gin small nificant. We, therefore, conclude that at least within the reso-
increments is continued for a few more steps, and then thiition of our numerical procedures, there is no hysteresis at
local minimum so obtained is followed to lower densities by S= 1.0 for thisL =12 sample. This implies that the first-order
decreasingn* in small steps. This is continued until the transition found in this sample fas=0.8 either becomes a
starting value oh* is reached. If the liquid-to-glass transi- continuous one or disappears as the valugisfincreased to

tion at the chosen value of is first-order with the three 1.0. The sharp change in the valuegyfax nearn* =0.706
densitiesnk , n% , andn® separated from one another, then SUgests that_ the transition persists as a continuous one. To
the cycling experiment described above should exhibit cleainvestigate this further, we have calculated the derivatives of
evidence of hysteresis. This is indeed what we find, for all

system sizes and at every run, if the valuesds lower than -8.9 ”
a certain critical value. A typical example is shown in Fig. 7 i »
which shows the results for la=12 sample as=0.8. The - 13l 5
hysteresis in the free energy aggl,, (shown in the insetis

evident: the liquid minimum becomes unstable @} -9
=0.735 am* is increased from a low initial value, while the
glassy minimum found fon* >n} can be continued all the . |
way down tong=0.720 before it becomes unstable. The
liquid-to-glass transition occurs af=0.725 where the two 91t
branches of the free energy cross. The same situation occurs )
for the incommensurate=25 system except that the values

of the transition points are}=0.79, nf=0.73, andn{
=0.71 fors=0.8. The results dt =15 are, within error bars, 92 o
the same as 'Fho_se fm= 25 at this value ob. _ “0.702 0704 0.706 0.708

The behavior in Fig. 7 is to be contrasted with that shown *
in Fig. 8 that displays the results of the cycling experiment n
on alL.=12 sample as=1. The distribution of the random  gig. 8. cycling across the liquid-to-glass transitionsder1 in
variables{r;} in this sample is the same as that of Fig.a =12 commensurate system. The same quantities are plotted as
7—only the strength of the disorder is changed. In this fig-in Fig. 7, and now no hysteresis is seen. Incommensurate systems
ure, there is no evidence of hysteresis in the free energy. Thexhibit the same behavior at somewhat larger valuess lodit not in
plot of gmax Shown in the inset exhibits a sharp change neasll runs.

Omax
o

12

o

14

0.702 0.704 0.706 0.708
n

— Increasingn’
-+ Decreasingn’
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FIG. 9. Derivatives with respect to* of the quantitiesp,, FIG. 10. Free energy crossing at the crystallization transition.

Pmax, @NdQmayx, as defined in the text, plotted as functionsndf ~ The solid and dotted lines represent, respectively, the dimensionless

across a putatively continuous liquid-glass transition ihal12 free energies of the crystalline and liquidlike minima of. & 12

sample withs=1.0. The three quantities have sharp peaks*at sample withs=0.6. Their crossing point is the density(s).

=0.706. The eigenvalug, also defined in the text, shows a pro-

nounced dip at the same point. different for the commensurate and incommensurate
samples, or that the poorer resolution of the smaller samples

Imax: Pmax» @Ndpio=Zip; With respect tan* in the region  asks discontinuous behavior in some of the lasyems.
where these quantities change rapidly. We have also exam-

ined the behavior o as a function ofn* in this region.
Results for these quantities are shown in Fig. 9 for the same
sample as that of Fig. 8. All the derivatives exhibit sharp To study how the crystallization density, changes as
peaks an* =0.706, and the value of goes through a mini- is increased from zero, we start with the crystalline minimum
mum that is very close to zero at the same point. Thesebtained for a commensurate samplesat0 and a large
results strongly suggest the occurrence of a continuous phagelue ofn*. We then find the symmetry related configuration
transition atn* =0.706. However, due to the limited resolu- that minimizes the random potential energy for a particular
tion of our numerical calculations and the smallness ofrealization of the disorder and continue this configuration to
sample size, we cannot rule out the possibility that the obthe desired value of. This configuration is then continued to
served behavior reflects a sharp crossover rather than a trgenaller values oh* by decreasing* in small steps. The
phase transition. Similar results are found for larger values ofrystalline minimum turns out to be quite robust under
s. The continuation of the “transition line” beyond the point changes of the density and the strength of the disorder—the
where the linedA, B, andC come together is determined by minimization routine converges rather quickly to the new
locating the value of* at which the eigenvaluk reaches a minimum as the value of* or s is changed by a small
minimum. The value ofs at which theA, B, andC lines  amount. While decreasing the valuerof, we keep track of
merge and the hysteresis in the cycling experiment disapthe free energy of the crystalline minimum and find the value
pears is found to be weakly dependent on the realization adf n* at which this free energy crosses that of the liquid
the disorder—it varies between 1.0 and 1.2 for the five dif-minimum for the same realization of the disorder. For rela-
ferentL =12 samples studied. tively small values ofs, the crossing point determines the
For the incommensurate samples, the situation is someralue ofny for the chosen value af Typical results for the
what more ambiguous. Fdr=25, the same cycling proce- crossing of these two free energies are shown in Fig. 10. Our
dure shows that the transition is clearly hysteretic for all rungesults for lineD, averaged over five realizations of the dis-
with s<1.1. For larger values aof, an increasingly larger order, are shown in Fig. 1. The crystallization transition is
percentage of the runs is nonhysterdiie., the results for strongly first order for all values &. In the smalls regime,
BF look like those in Fig. 8 while the other runs display a the crystalline minimum has the lowest free energy for all
behavior similar to that in Fig. 7 but with much smaller densities above lin®. Therefore, the line#, B, andC do
discontinuities. Ass is increased beyons= 1.8, it becomes, not have any equilibrium thermodynamic significance in this
in most of the “runs,” impossible to distinguish the discon- regime for a commensurate system: the liquid-to-glass tran-
tinuities, if any, from computer noise. Thus, it is possible insition at line B can be observed only if the crystallization
this case to plot separafe B, andC lines all the way up to transition at lineD is avoided, e.g., by rapid compression.
s=1.8. This accounts for the obvious difference in this re- As shown in Fig. 1, the crystallization line crosses the
spect between Figs. 1 and 2. The resultslferl5 are quite liquid-to-glass transition line at a point that is very close to
consistent with those fdr =25, but the smaller system size that where the line#\, B, and C seem to come together.
makes all interpretations more difficult. Thus, it is more dif- Beyond this point, lineD is determined by the crossing of
ficult to identify the precise position of any well-defined tri- the free energies of glassy and crystalline minima. The pro-
critical point (or a critical poini from the results for the cedure is quite analogous to that shown in Fig. 10. This line,
incommensurate samples. One might alternatively say thaherefore, represents a first-order transition between crystal-
these incommensurate results are indicative of a crossover.line and glassy states in this regime. The phase diagram of
is not possible to completely rule out that the behavior isFig. 1 implies that the system undergoes a first-order liquid-

D. Crystallization
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to-crystal transition for small values af as the density is other hand, the quantitative differences between our results
increased from a low initial value. However, as the value ofin Fig. 1 and those in Fig. 2 appear to arise chiefly from the
sis increased above a critical val@@hich is close to unity incommensurability of the latter sample, rather than from the
for the L=12 system the transition as* is increased be- slight difference in the values df, or even from that in the
comes a continuous liquid-to-glass transiti@r perhaps a values ofL: we have found negligible sample-size effects in
sharp crossover The glassy state then undergoes a first-comparing thel =15 results to those di=25 at the same
order transition to the crystalline state as the density is invalue of h. The effects of discretization would presumably
creased further. The observed curvature of Inéor larges  disappear foh much smaller than the width of the approxi-
also implies that the system would undergo a first-ordemately Gaussian density distributions near the points where
crystal-to-glass transition as the strength of the disorder i¢he particles are localized at an inhomogeneous minimum of

increased at constant density. the continuum free-energy functional. Unfortunately, a nu-
merical calculation with such small values-0.01o) of h
IV. SUMMARY AND DISCUSSION would require dealing with a very large numkief the order

of 10°) of variables{p;}. This appears to be computationally
We have mapped out the mean-field phase diagram of difficult, as mentioned in Sec. Il.
hard sphere system in the presence of a quenched random Possible effects of fluctuations are not included in our
potential by numerically studying the evolution of the mean-field phase diagram. The first-order crystallization
minima of a model free energy as a function of the densitytransition should not be strongly affected by fluctuations.
n* and the strengtk of the disorder. The phase diagram in The situation is more complex for the glass transition be-
the (n*,s) plane exhibits liquid, glassy, and crystallifler ~ cause there are a large number of glassy local minima. When
commensurate samplephases. The standard first-order fluctuations are included, the system might visit a large num-
crystallization transition that occurs st 0 upon increasing ber of different glassy minima during its evolution over long
n* retains its character at smallas a first-order transition times, and thus behave like a liquid in that the particles
from a weakly inhomogeneous liquid phase to a nearly cryswould no longer be localized in space and the time-averaged
talline state. We also find for all samples a liquid-to-glasslocal density would be only weakly inhomogeneous. A true
transition in the metastable, “supercompressed” regimethermodynamic glass transition would occur only if the char-
This transition is first order for smad, but within the reso- acteristic time scale for transitions between glassy minima
lution of our results, it appears to become continuousias diverges in the thermodynamic limit. Whether this happens
increased beyond a critical value, which is larger for incom-in the pure system is still a highly controversial issue. Fur-
mensurate samples. The crystallization line crosses the gla#iser investigations of this question for systems of particles in
transition line near the point where the glass transition bethe presence of quenched disorder would be very worth-
comes continuous. Thus, the first-order crystallization transiwhile. The presence of multiple low-lying glassy minima of
tion found for smalk as the density is increased from a small the free energy is expected to lead to slow relaxation even if
initial value is replaced, at sufficiently largeby a continu-  no thermodynamic glass transition is present. Therefore, sig-
ous liquid-to-glass transition. The phase diagram also showsatures of the mean-field glass transition found in our study
a first-order crystal-to-glass transition asis increased at should show up in the dynamics of the system even if no
constanin®*. thermodynamic glass transition occurs when fluctuations are
The qualitative features of our phase diagréime., its  taken into consideration.

topology, the shapes of the transition and instability lines, Our density-disorder phase diagram exhibits qualitative
and the nature of the transitionare all identical to those similarities to the field-temperature phase diagram of some
found in the analytic study17] of the same systerf31]. high-T, superconductors in the presence of random point
Two of our most important results, the change in the naturginning. For a system of vortices in the mixed phase of
of the liquid-to-glass transition beyond a certain valuesof type-Il superconductors, the temperatdrelays the role of
and the crossing of the crystallization and glass transitiorthe densityn* of the hard sphere system—increasifigs
lines above this critical value, were also found in the analyticanalogous to decreasimg . As pointed out in the Introduc-
calculation. This similarity between the results of two studiestion, increasing the magnetic field is believed[11] to in-
using extremely different methodologies strongly suggestsrease the effective strength of the pinning disorder. Using
that the qualitative features of our phase diagram are corredfiese analogies, one can translate, in a very crude and quali-
at least at the mean-field level. The quantitative differencesative sense, our phase diagram in the,5) plane to a
that exist between the numerical and replica results, i.e., thaggthase diagram for superconductors in theH) plane. Then,
all the transition and instability lines in our phase diagramsour result that the crystallization transition at weak disorder
lie at substantially lower densities than those obtained in thés replaced by a continuous glass transitiors & increased
analytic study, have the same origin as the discrepancy beranslates into the statement that for superconductors, the
tween ours=0 results and those of molecular dynanfi88] first-order liquid to Bragg glass transition at low fields
of the pure hard-sphere system. As noted bef@® 28, should change over to a continuous glass transitioll &s
these differences result from the discretization of the freeincreased. As noted in the Introduction, this is the behavior
energy functional. The use of a simple cubic mesh of spacingpund in experiments on a family of highs superconduct-
h~0.20 in the discretization procedure increases the relativers. The phase diagram of these superconductors also exhib-
stability of inhomogeneous local minima of the free energyits a Bragg glass to amorphous solid transitionHass in-
and thus leads to substantially lower values for the densitiesreased at lowT. This is analogous to the crystal-to-glass
at which crystallization and the glass transition occur. On theransition found in our phase diagram ass increased at



3658 CHANDAN DASGUPTA AND ORIOL T. VALLS PRE 62

constant density. Further evidence in support of this analoggduced, for example, by suitably configured laser fi¢&{3])

is provided by a recent numerical stufi§4] that suggests would probably provide a close approximation to our model.

that the high-field, low-temperature phase of highsuper-  Since simple liquids with short-range pair potentials that are
conductorgthe so-called vortex glass phase very similar  strongly repulsive at short distances behave in many ways
to a structural glass. In view of these similarities, an extendike a hard-sphere liquid, our calculation is expected to ap-
sion of our calculation to a system of pancake vortices irply, at least qualitatively, to such systems also.

layered superconductors with random point pinning, using
the appropriate form of the free energy, would be of obvious
interest.

We are not aware of any experimentally studied system We are grateful to F. Thalmann, G. I. Menon, A. K. Sood,
that provides a direct and precise physical realization of thé&. Bhattacharya, G. F. Mazenko, and T. Witten for helpful
model studied here. Colloidal suspensions in the presence discussions or comments, and to S. Ramasesha for help in
a time-independent, spatially random external potefpiad-  the computations.
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