
55-0149

PHYSICAL REVIEW E SEPTEMBER 2000VOLUME 62, NUMBER 3
Phase diagram of a hard-sphere system in a quenched random potential: A numerical study
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We report numerical results for the phase diagram in the density-disorder plane of a hard-sphere system in
the presence of quenched, random, pinning disorder. Local minima of a discretized version of the
Ramakrishnan-Yussouff free energy functional are located numerically and their relative stability is studied as
a function of the density and the strength of disorder. Regions in the phase diagram corresponding to liquid,
glassy, and nearly crystalline states are mapped out, and the nature of the transitions is determined. The liquid
to glass transition changes from first to second order as the strength of the disorder is increased. For weak
disorder, the system undergoes a first-order crystallization transition as the density is increased. Beyond a
critical value of the disorder strength, this transition is replaced by a continuous glass transition. Our numerical
results are compared with those of analytical work on the same system. Implications of our results for the
field-temperature phase diagram of type-II superconductors are discussed.

PACS number~s!: 64.70.Pf, 64.60.Ak, 64.60.Cn
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I. INTRODUCTION

The equilibrium phase diagram of a classical system
interacting particles in a quenched, random, pinning poten
is an active and important subject of research@1#. Systems
such as vortices in the mixed phase of high-Tc superconduct-
ors @2#, fluids confined in porous media@3#, magnetic bubble
arrays@4#, and Wigner crystals@5# provide physical realiza-
tions of a collection of interacting classical objects in t
presence of an external, time-independent, random poten
In the absence of such a potential, systems of this kind
expected to crystallize at low temperatures. Several ye
ago, Larkin@6# showed that arbitrarily small amounts of ra
dom pinning disorder destroy long-range translational or
in all dimensionsd,4. However, recent theoretical studie
@7,8# suggest that weak disorder distorts the crystalline s
only slightly, leading to a phase with perfect topological o
der and logarithmic fluctuations of the relevant displacem
field. This phase, with quasi-long-range translational or
and power-law Bragg peaks in the structure factor, is calle
‘‘Bragg glass’’ @8#. The transition point between a Brag
glass and the high-temperature liquid phase is likely to
shifted with increasing disorder, but the transition is believ
to remain first order as long as the disorder is weak. A qu
tion of obvious interest is how this transition temperature a
the nature of the transition depend on the strength of
random potential.

As the strength of the disorder is increased, the Bra
glass phase is expected to undergo a transition to a topo
cally disordered amorphous phase with only short-range
relations. It is not yet clear whether this phase is thermo
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namically distinct from the high-temperature liquid. A
interesting possibility is that it is analogous to the glas
phase obtained by supercooling a liquid below the structu
glass transition temperature in the absence of exte
quenched disorder@9#. If this is so, then the phase diagram
such systems would contain three phases: a Bragg g
phase obtained at low temperature and weak disorder
amorphous~without quasi-long-range translational orde!
glassy phase at low temperatures and strong disorder, a
weakly inhomogeneous~because of the random potentia!
liquid phase at high temperatures. The glassy phase woul
thermodynamically stable in these systems. This is differ
from the situation in the absence of external disorder wh
the crystalline state is the true equilibrium state near
structural glass transition and both the supercooled liq
and the glass are metastable. Thus, the presence of ext
disorder may lead to the possibility of occurrence of a tr
thermodynamically stable, glassy phase.

The phase diagram@2# in the temperature (T) –magnetic
field ~H! plane of layered, highly anisotropic, type-II supe
conductors such as Bi2Sr2CaCu2O8 in a magnetic field per-
pendicular to the layers is a credible candidate to exh
these three phases. For a wide range of values ofH, the flux
lines in these materials may be regarded as columns of in
acting ‘‘pancake’’ vortices@2# residing on the layers, and th
properties of the mixed phase may be described in term
the classical statistical mechanics of these pointlike obje
At low enough fields, a flux-lattice melting transition sep
rates a nearly crystalline state of the flux lines from a dis
dered ‘‘vortex liquid’’ state. The first-order character of th
transition has been carefully documented@10#. When H is
increased, the transition becomes continuous@10,11#, and the
nearly crystalline state appears to be replaced by a ‘‘vor
glass’’ @12# that has glassy properties such as non-Ohm
current-voltage characteristics@13#. It is generally assumed
@12# that the vortex glass phase owes its existence to
presence of pointlike pinning disorder. Observation of Bra
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peaks in neutron scattering experiments@14# confirms that
the phase at lowH andT is a Bragg glass. As the strength
the disorder is increased, either indirectly by increasingH
~which is believed to increase@11# the effective strength o
the disorder!, or directly by increasing the amount of samp
defects@15#, the Bragg glass phase changes over to the v
tex glass. The latter is separated from the liquid by a c
tinuous transition@16#. Thus, this phase diagram sugge
that the first-order liquid-to-crystal transition in a thre
dimensional system of pointlike objects may be driven by
pinning disorder into a continuous liquid-to-glass transitio

The formation of a glassy phase at strong disorder w
recently investigated analytically@17# in a study of the phase
diagram of a system of hard spheres in a random pinn
potential. This work used a combination of two ‘‘mea
field’’-type approaches based on the ‘‘replicated liquid fo
malism’’ @3,18,19#: the replica method@20# was used for
treating the effects of quenched disorder, and the hyperne
chain approximation@21# to calculate the equilibrium corre
lation functions in the liquid in the presence of the pinni
potential. These correlation functions were then the inpu
a replicated density functional@18# of the Ramakrishnan
Yussouff ~RY! form @22# from which the location of the
freezing transition of the liquid into a nearly crystallin
~Bragg glass! phase was obtained. The possibility of a liqui
to-glass transition was investigated using the phenome
logical approach of Me´zard and Parisi@19#. The resulting
@17# phase diagram in the density-disorder plane~the density,
rather than the temperature, is the appropriate control par
eter for a hard-sphere system! shows three phases: a near
crystalline Bragg glass, an amorphous glassy phase, a
low-density liquid. It is consistent with the expectation~from
earlier work@18# and the Lindemann criterion@23#! that the
density at which the Bragg glass to liquid transition occ
should move to higher values as the strength of the diso
is increased. The first-order crystallization transition is
placed by a continuous glass transition as the diso
strength is increased above a threshold value. This ph
diagram is, thus, qualitatively similar to that proposed
some layered type-II superconductors if, as noted above
density is replaced by the temperatureT and the disorder
strength by the magnetic fieldH.

Here, we report the results of a numerical investigation
the phase diagram of the same system: a hard-sphere flu
the presence of a random pinning potential with short-ra
spatial correlations. We use direct numerical minimization
study the effects of the presence of a random potential on
minima of a discretized version of the RY free-energy fun
tional for the hard-sphere system. In the absence of exte
disorder, this model free-energy functional exhibits, at su
ciently high densities, a large number of ‘‘glassy’’ loc
minima @24# characterized by inhomogeneous but aperio
density distributions. A global minimum corresponding
the crystalline solid is also found at high densities if t
sample size and the discretization scale are commens
with the crystal structure. We have carried out extensive
merical investigations of the resulting free-energy landsc
@25–28# in the absence of disorder. In this study, we deve
similar numerical methods to find the location and struct
of the local minima of the same model free energy with
addition of a time-independent, random, one-body poten
r-
-

e
.
s

g

ed

n

o-

m-

a

s
er
-
er
se
r
he

f
in
e

o
he
-
al
-

c

ate
-
e

p
e
e
l.

Using these numerical methods we investigate how
uniform liquid, crystalline solid, and glassy minima of th
free energy in the absence of the random potential evolv
the strength of this potential is increased. We also exam
the dependence of the free energy and the density struc
of these minima on the strength of the disorder. In this p
ture, a transition from one phase to another is signaled by
crossing of the free energies of the corresponding minima
the free energy. By monitoring where these crossings oc
as the density and the strength of the disorder are varied
are able to map out the phase diagram in the density-diso
plane. This phase diagram is qualitatively very similar to t
one obtained in the analytic work@17#. For weak disorder we
find, in the commensurate case as described earlier whe
crystalline minimum exists, a first-order liquid-to-cryst
transition that moves to higher density as the disorde
increased. In the metastable ‘‘supercompressed’’ reg
~i.e., at a density higher than the value at which equilibriu
crystallization takes place for the commensurate case!, we
find in all cases a liquid-to-glass transition. The density
which this transition occurs decreases~very slowly for the
largest systems studied, which are incommensurate,
more rapidly for the smaller, commensurate systems! as the
disorder is increased. The nature of this glass transition
pends on the strength of the disorder: it is first order wh
the disorder is weak, but it changes to second order beyo
certain critical value of the disorder strength. For the co
mensurate case, the crystallization line crosses the glass
sition at or very near the same critical value of the disor
strength, so that the system at stronger disorder then un
goes a liquid-to-glass transition~instead of the liquid-to-
crystal transition found for weak disorder! as the density is
increased. The continuous nature of the glass transition in
large disorder regime is in contrast with the first-order tra
sition from the liquid to a crystalline or glassy state~depend-
ing on the commensurability! at small values of the disorde
strength. Thus, this work supports the prediction that
first-order liquid-to-crystal~Bragg glass! transition should
change over to a continuous liquid-to-glass transition as
strength of the pinning disorder is increased beyond a crit
value.

The rest of the paper is organized as follows. In Sec.
we define the model studied here and outline the numer
procedure used. The results obtained for the different tra
tion lines in the density-disorder plane are described in S
III. Section IV contains a summary of our main results and
few concluding remarks.

II. METHODS

A. The free-energy functional

As discussed in the Introduction, our starting point is t
free energy as a functional of the time-averaged local den
r(r ) at each pointr . We write this free energy functional in
the form

F@r#5FRY@r#1Fs@r#, ~2.1!

where the first term in the right-hand side is the RY fre
energy functional@22# for hard spheres in the absence
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3650 PRE 62CHANDAN DASGUPTA AND ORIOL T. VALLS
disorder, and the second is the contribution arising from
presence of a quenched random potential. Thus, we hav

bFRY@r#5E dr$r~r !ln@r~r !/r0#2dr~r !%

2
1

2E drE dr 8C~ ur2r 8u!dr~r !dr~r 8!.

~2.2!

Here, we have defineddr(r )[r(r )2r0 as the deviation of
r(r ) from r0, the density of the uniform liquid, and taken th
zero of the free energy at its uniform liquid value. In E
~2.2!, b51/(kBT), T is the temperature and the functio
C(r ) is the direct pair correlation function@21# of the uni-
form liquid at densityr0, which can be analytically ex
pressed in terms of the usual dimensionless density for h
spheres of diameters, n* [r0s3, by making use of the
Percus-Yevick approximation@21# for hard spheres:

C~r !52
~112h!2

~12h!4
~110.5hr 3!

16h
~11h/2!2

~12h!4
r ~r<1!, ~2.3a!

C~r !50 ~r .1!, ~2.3b!

whereh is the packing fraction,h[(p/6)n* , and the dis-
tancer is in units of s. This approximation is sufficiently
accurate in the density ranges (n* <1.0) considered in this
paper. We write also

bFs@r#5E drdr~r !Vs~r !, ~2.4!

whereVs(r ) is an external potential~in dimensionless form!
representing the random, quenched disorder. We will ass
that Vs has zero mean and short-range Gaussian correla
as detailed below.

In order to carry out numerical work, we discretize o
system. We introduce for this purpose a simple cubic co
putational mesh of sizeL3 with periodic boundary condi-
tions. On the sites of this mesh, we define density variab
r i[r(r i)h

3, wherer(r i) is the density at sitei and h the
spacing of the computational mesh. It is known from pre
ous work@24,25# that in the absence of any random pote
tial, this discretized system crystallizes at sufficiently hi
densities if the quantitiesh andL are commensurate with
fcc structure with appropriate lattice spacing, whereas
crystalline state exists when the computational mesh is
commensurate with a fcc structure. Both commensurate
incommensurate systems exhibit@24–27# many glassy~inho-
mogeneous but aperiodic! minima of the free energy at den
sities higher than the value at which crystallization occurs
commensurate samples.

To model the random potentialVs(r ), we introduce ran-
dom variables$Vi% defined at the sites of the computation
mesh. These variables are uncorrelated with one another
distributed according to a Gaussian probability distribut
with zero mean and variances. Thus,s represents the dimen
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sionless strength of the disorder. In terms of these quanti
the dimensionless free energy of our discretized system
the form

bF5(
i

$r i ln~r i /r l !2~r i2r l !%

2
1

2 (
i

(
j

Ci j ~r i2r l !~r j2r l !1(
i

Vi~r i2r l !,

~2.5!

where the sums are over all the sites of the computatio
mesh,r l [r0h3, andCi j is the discretized form of the direc
pair correlation functionC(r ) of the uniform liquid.

The thermodynamics of hard spheres in the clean limi
determined by the dimensionless densityn* only. Our res-
caling of the potentialVs by b @see Eq.~2.4!# ensures thats
is now the only additional relevant variable. Our objective
to study the phase diagram of this system in the (n* ,s)
plane. In our mean-field description, different phases are
resented by different minima of the free energy. If seve
local minima of the free energy are simultaneously prese
then the minimum with the lowest free energy represents
thermodynamically stable phase and the other local min
correspond to metastable phases. A crossing of the free
ergies of two different minima signals a first-order pha
transition. The point where a minimum becomes locally u
stable~i.e., changes from a true minimum to a saddle po
or disappears altogether! corresponds to a mean-field spin
odal point representing the limit of metastability of the co
responding phase. A merging of the transition point with t
spinodal points of the two phases signals a continuous ph
transition in this description. Thus, a study of how t
minima of the free energy of Eq.~2.5! evolve asn* ands are
changed is sufficient for mapping out the mean-field ph
diagram in the (n* ,s) plane.

Locating the minima of the free energy is a difficult n
merical problem. The crystalline and glassy minima a
highly inhomogeneous with the values of the density va
ables$r i% ranging over more than 12 orders of magnitud
Also, the constraints,r i>0 for all i, must be satisfied for any
physical minimum. For these reasons, standard, numeric
efficient minimization methods cannot be readily applied
this problem. We have used a numerical procedure gene
ized from that originally developed for the clean case@24#.
This procedure works by changing the local density variab
$r i% in a way that ensures that these changes always decr
the free energy. Given an initial configuration of the va
ables$r i%, this procedure finds, by constantly moving dow
hill on the free-energy surface in the multidimensional co
figuration space spanned by theL3 variables$r i%, the local
minimum whose basin of attraction contains the initial sta
Thus, different local minima of the free energy can be
cated by using this minimization procedure for different, a
propriately chosen, initial configurations. While this proc
dure is numerically stable and guaranteed to converge
local minimum, it is not very efficient, often requiring thou
sands of iterations for convergence. For this reason,
study is restricted to relatively small systems, few realiz
tions of the disorder and coarse discretization scales.
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As noted earlier, there are in our system three differ
kinds of free-energy minima: liquid, crystalline, and glass
In the clean limit (s50), it is easy to distinguish amon
them: the liquid minimum has uniform density, the cryst
line minimum has a periodic distribution of the density va
ables, and a glassy minimum exhibits a strongly inhomo
neous nonperiodic density distribution. This symmetry-ba
distinction among minima of different kinds becomes le
clear when the external random potential is turned on: fos
Þ0, the density distribution in the liquid phase is not co
pletely homogeneous, and the crystalline state is not stri
periodic.

Therefore we use here a procedure of ‘‘adiabatic conti
ation’’ to distinguish among the liquid, crystalline, an
glassy minima in the presence of the disorder. This pro
dure works as follows: We start with a minimum of a pa
ticular kind obtained ats50 for a given value ofn* . There
is no difficulty in generating the liquid~and if appropriate the
crystalline! configuration for the pure system. Glassy sta
at s50 are easily obtainable also, in the right density rang
by the procedures described in Ref.@27#. Indeed, we have
used in many cases the same density configurations obta
there that were available as computer files. After thus cho
ing the initial state, we generate a set of uncorrelated rand
numbersr i , i 51, . . . ,L3, distributed according to a Gaus
ian with unit variance. A ‘‘realization’’ of the random poten
tial $Vi% is obtained by multiplying these random numbe
by the strength parameters. The initial s50 minimum is
then ‘‘followed’’ to finite s by increasings in small stepsds
@29#. After each step increase, the minimization routine
run to find the nearest local minimum, using the configu
tion at the minimum obtained at the previous step as
starting point. During this process, the random variables$r i%
are held fixed—only the strength parameters in increased in
steps ofds. By iterating this procedure, minima of differen
kinds obtained ats50 for a certainn* are ‘‘followed’’ at
constant density to the desired value ofs. We use the terms
‘‘liquid,’’ ‘‘crystalline,’’ and ‘‘glassy’’ to denote the contin-
ued sÞ0 minima obtained from as50 minimum of the
corresponding kind by using this continuation proced
without crossing transition lines. We will show that even
larger s the different kinds of minima have distinguishab
structures.

Once a minimum of the desired kind is obtained a
particular point in the (n* ,s) plane, the translational corre
lations at the minimum can be quantified by the two-po
correlation functiong(r ) of the density variables$r i%. This
function is defined as

g~r !5(
i . j

r ir j f i j ~r !/F r̄2(
i . j

f i j ~r !G , ~2.6!

where the distancer is measured in units ofs, r̄
[( ir i /L3 is the average value of ther i variables at the
minimum under consideration, andf i j (r )51 if the separa-
tion between mesh pointsi and j lies betweenr and r 1Dr
(Dr is a suitably chosen bin size!, and f i j (r )50 otherwise.
This function represents the spatial correlation of thetime-
averagedlocal density, and is distinct from theequal-time,
two-point density correlation function that is often calle
g(r ) in the literature. We also calculatermax, the maximum
t
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value of ther i variables at the minimum, which gives add
tional information about the inhomogeneity when contras
with r̄ or its rescaled equivalentrav[r̄(s/h)3 at the mini-
mum.

In addition to examining the transitions by looking atF,
g(r ), and the density configurations, we also directly che
on the stability of the corresponding minima. The stability
a local minimum requires that all the eigenvalues of the H
sian matrixM whose elements are given by

Mi j [
]2~bF !

]r i]r j
5

1

r i
d i j 2Ci j ~2.7!

evaluated at the minimum must be positive. This matrix
difficult to handle numerically if the minimum under consid
eration is strongly inhomogeneous, with some of ther i ’s
very close to zero. In such cases, the 1/r i in the first term on
the right-hand side of Eq.~2.7! causes numerical difficulties
To avoid this problem, we consider instead the closely
lated matrixM 8 whose elements are given by

Mi j8 [Ar iM i jAr j5d i j 2Ci jAr ir j , ~2.8!

evaluated at the minimum under consideration. It is easy
show that an instability of the minimum corresponds to t
vanishing of the smallest eigenvaluel of this matrix. In our
numerical work, we calculate the value ofl in order to
check whether the minimum under study becomes unst
asn* or s is varied.

In our computations we have included the density ran
from n* 50.65 to n* 50.95, and values ofs from zero to
about two. These are sufficient to encompass the phenom
we wish to study. We have used three lattice sizesL
512,15, and 25. For the last two we have used an inco
mensurate ratioh/s51/4.6, whereas for the smallest lattic
we have taken the commensurate valueh/s50.25.

III. RESULTS

A. General considerations: Phase diagram

Consider first the previously studied@24,27,28# case of
the disorder-free system (s50 line!. There, only the uniform
liquid minimum is present at low densities. Asn* increases,
a crystalline minimum appears if the computational mesh
commensurate. Whenn* is further increased, a density i
reached at which the crystal becomes thermodynamic
stable, that is, its free energy becomes lower than that of
liquid state. We will denote this density asnD* . Regardless of
commensurability, many glassy minima appear as the d
sity is further increased. We denote bynC* the density at
which the first glassy minimum makes its appearance. Al
natively, one may consider the evolution of the glas
minima asn* is decreasedfrom a large initial value, and
definenC* as the density at which the last remaining glas
minimum becomes locally unstable and disappears: the
energy of this last remaining glassy minimum crosses tha
the liquid at a densitynB* that is somewhat higher thannC* .
This density corresponds to a liquid-to-glass transition. In
commensurate case, the densitynC* is above the crystalliza-
tion densitynD* , and the free energy of the crystalline min
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mum is lower than that of the glassy minima. Thus, the gl
transition in the pure system occurs in a ‘‘supercompress
regime where the crystalline state is the thermodynamic
stable one.

When we include the effects of the disorder (s.0), we
find yet another density,nA* , at which the liquid minimum
becomes locally unstable~i.e., ceases to exist as a local min
mum of the free energy!. For weak disorder, the value ofnA*
is large~substantially higher thannB* ) so that the four den-
sitiesnA* , nB* , nC* , andnD* are in decreasing order. Thus, w
have four~three in the incommensurate case where the c
talline state is absent! functions nX* (s) with X5A,B,C,D
representing precisely the four transitions or instabilities
fined above. We denote the corresponding lines in the (n* ,s)
plane as theA,B,C,D lines. The determination of the loca
tion of these lines is one of the main results of our wo
These results will be discussed below, but to fix ideas an
make this discussion easier to follow, we show in Fig.
these four lines for theL512 commensurate case. There, t
general structure of the phase diagram, including the gen
shape of the four linesnX* (s) can be seen. Similarly, we
show in Fig. 2 the three linesnX* (s),X5A,B,C ~from top to
bottom! found in the incommensurate,L525 system. The
similarities and differences between the commensurate
incommensurate cases are discussed below. The lines i
phase diagram for the incommensurateL515 case are within
error bars the same as those shown in Fig. 2, so that
differences between Figs. 1 and 2 must be attributed to
ferent commensurability rather than to different sample s

There are certain trends that can be easily discerned w
one follows a free-energy minimum ass is increased at con
stantn* . If one starts from the uniform liquid minimum a
s50 and a relatively small value ofn* , the free energy
value at the minimum~initially zero according to our con
vention! decreases steadily with increasings. The density
distribution becomes progressively less uniform, withrmax,
which at s50 equals the average valuer̄5r l , rising by
more than one order of magnitude ass increases from zero to
one. For a deep glassy state at a relatively large value ofn* ,

FIG. 1. The overall phase diagram of the hard-sphere syste
the density (n* )-disorder~s! plane, obtained for theL512 com-
mensurate sample, wheren* [ns3 is the dimensionless density an
s is the dimensionless strength of the random potential. The m
ing of the line labels is explained in the text. The results shown
averages over five realizations of the disorder. The error bars sh
are calculated from sample-to-sample variations.
s
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the free energy is strongly negative even ats50, and its
value decreases further ass increases. The density distribu
tion at such a glassy minimum is considerably more inhom
geneous than that of the liquid minimum continued to t
same value ofs and it is less sensitive to the value ofs: the
quenched disorder has less effect on a state that is inho
geneous and disordered to begin with.

These trends in the behavior of liquid and glassy mini
ass is increased from zero are clearly illustrated by exam
ing the pair correlation functiong(r ), defined in Eq.~2.6!, at
each minimum. In Fig. 3, we showg(r ) computed for the
liquid minimum at sizeL525 and densityn* 50.66. The
curves shown, in order of increasing value of the peak n
r 51, correspond to increasing values ofs50.2,0.6,1.0,
1.4,1.8. There is a clearly visible increase in structure t
becomes more evident as the value ofs increases beyond

in

n-
e
n

FIG. 2. The overall phase diagram for the incommensurate c
at sizeL525 as explained in the text. The diamonds represent thA
line, the crosses theB line, and the dashed line is theC line. Sample
error bars have also been included. They reflect sample-to-sa
variations for 6–12~the number increases withs) realizations of the
disorder.

FIG. 3. Liquid phase correlations. The pair correlation functi
g(r ) as defined in Eq.~2.6! plotted as a function of the dimension
less quantityr, defined as the distance in units ofs, for the liquid-
like minimum at densityn* 50.66. The curves shown, in order o
increasing peak height atr 51, correspond tos50.2,0.6,1.0,
1.4,1.8. The system size isL525.
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unity. However, this level of structure is still quantitative
different from that found for glassy minima at relatively hig
densities. This can be seen by comparing Fig. 3 with Fig
where we plotg(r ) for a L525 glassy minimum continued
from s50 to s51.8 atn* 50.78. We see that thes depen-
dence of the structure is now much weaker, and the hei
of the peaks atr 50 and nearr 51 are much larger than
those in Fig. 3. These results can be compared to those fo
in the replica calculation@17#. To make contact with those
results, ourg(r ) for the liquidlike minimum should be com
pared with the functiong0(r ) of the replica symmetric solu
tion, and ourg(r ) for a glassy minimum with the function
g1(r ) of the replica-symmetry-broken solution. Althoug
due to differences in the modeling of the random poten
and effects of discretization in the present study~some of
these effects are discussed in Sec. IV!, a detailed, quantita
tive comparison of our results with those of Ref.@17# is not
possible, it is clear that the main features we have discus
are qualitatively similar.

The crystalline minimum obtained fors50 in commen-
surate systems at sufficiently high densities shows very l
change in structure as it is followed to nonzero values os.
Any effects of weak pinning disorder on the crystalline ord
may be too subtle@6,8# to show up at the system sizes a
discretization scales used here.

B. Instability of the liquid minimum

We consider first theA line, that is, the density at which
the liquid minimum becomes locally unstable asn* is in-
creased from a low initial value, keepings fixed. This tran-
sition is detected at any desired value ofs in the following
way. At a density previously determined to be well below t
value of nA* (s) ~this determination is easily performed b
trial and error!, one ‘‘follows’’ the s50 liquid minimum, as
previously explained, to the value of the disorder stren
being studied. The density configuration at this minimum
the initial condition. Then, one proceeds to increasen* by
small intervals, thus moving up along a vertical line in t
phase diagram. At every value ofn* that is reached, we run
our minimization routine~using the configuration at th

FIG. 4. The pair correlation functiong(r ) for a glassy mini-
mum. The curves shown correspond to the same values ofL ands
as in Fig. 3, but for a glassy minimum atn* 50.78 as discussed in
the text.
4

ts

nd

l

ed

le

r

h
s

minimum obtained at the previous step as the starting po!
to locate the nearest minimum. The density configuration
the minimum is analyzed and then used as the initial con
tion to study the next higher density.

In the initial stages of this process, the system remain
the liquidlike minimum, with little change in its properties
However, asn* reaches the valuenA* (s), discontinuities are
found. These are more prominent for the larger system s
~Fig. 2! and particularly dramatic for values ofs not too
large. As the liquid minimum becomes unstable, the sys
has to find some other nearby minimum~our numerical mini-
mization procedure is designed to converge only to sta
local minima of the free energy!. Computationally, this is
heralded by a very sharp and obvious increase in the num
of iterations required by our numerical procedure to find
free-energy minimum nearest to the starting configurati
This new minimum is invariably glassy, as one might expe
since a considerable number of glassy minima are clos
configuration space to the liquidlike minimum@27#. The
value of the free energy at the minimum that the system
reached drops sharply as thenA* (s) value is crossed, becaus
the free energies of glassy minima are considerably lowe
the region of the (n* ,s) plane being considered. Also, eve
measure of structure in the system increases abruptly, s
as discussed above in connection with Figs. 3 and 4, gla
states are much more inhomogeneous than the liquid
ones in this region of the (n* ,s) plane.

An example of the behavior found is displayed in Figs
and 6. In the main part of Fig. 5, we show the evolution
the free energy asn* is increased in steps of 0.001, keepin
s fixed at 0.6 for aL512 sample. One can clearly see th
bF varies little while the system remains in the liquid min
mum and jumps abruptly as this minimum becomes unsta
nearnA* .0.78. The behavior for the larger incommensura
samples is quite similar, the main difference being that
drop in bF is much larger, and that the transition occurs,
this value ofs, at nA* .0.84 for bothL515 andL525. The
value ofnA* can readily be found to very high precision an

FIG. 5. Discontinuities at theA line. In the main plot, the free
energy in dimensionless form for aL512 sample (s50.6) is plot-
ted as a function of the dimensionless density variablen* . A sharp
drop in the free energy is seen as the liquid minimum becom
unstable and the system switches to a glassy minimum. As show
the inset, this switch is also reflected in the discontinuity inl, the
smallest eigenvalue of the matrixM 8 defined in Eq.~2.8!.
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it varies little as one averages over different realizations
the quenched disorder, for the sames. The error bars shown
in Fig. 2 correspond to an average over 6–12 realizati
~the larger number at largers). The results in Fig. 1 are
averages over five realizations. In the inset, we show that
smallest eigenvaluel of the matrixM 8 defined in Eq.~2.8!
approaches zero asn* approachesnA* from below. This is as
would be expected—as noted in Sec. II, the instability o
local minimum is signaled by the vanishing ofl. In Fig. 6,
we show three quantities that characterize the nature of
density distribution at a minimum. These aregmax, the value
of the pair correlation functiong(r ) at its first finiter maxi-
mum ~nearr 51); rmax, the maximum value of ther i ; and
the dimensionless average densityrav defined in Sec. II. All
these quantities exhibit discontinuous changes as the sy
switches minima atn* 5nA* .0.78. gmax remains close to
unity as long as the system stays in the liquid state, and
jumps to a substantially larger value consistent with the
creased short-range order present in a glassy minimum.
can also be seen from Figs. 3 and 4. The value ofrmax also
increases by a considerable amount, indicating the incre
inhomogeneity of a glassy minimum relative to the liquidli
one. The small increase in the value ofrav reflects that the
average density at a glassy minimum is slightly higher th
that at the liquidlike minimum.

The behavior discussed above changes ass is increased.
The change occurs nears51 for L512, and at somewha
largers for the other system sizes, as theA,B,C lines come
very close to one another. The results obtained in the lar
s regime are described in Sec. III C.

C. Instability of glassy minima and the liquid-to-glass
transition

To find theB andC lines, we start with a carefully chose
glassy configuration at a relatively highn* and fixeds, and
then follow this configuration to lower densities by decre
ing n* in small steps (dn* .0.001), keeping the value ofs
unchanged. This is continued until the minimum becom
unstable and the minimization routine converges to a n

FIG. 6. Example of how the system becomes more structure
theA line is crossed for anL512 sample ats50.6. The heightgmax

of the first finite-r peak ing(r ) increases discontinuously, the de
sity nonuniformity represented byrmax exhibits a large increase
and the average densityrav shows a small discontinuous increas
In order to be able to use a single vertical scale, we have displa

rav rather thanr̄. All plotted quantities are dimensionless~see text!.
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minimum which, if the starting minimum is chosen as d
scribed below, turns out to be the liquidlike one. The dens
at which this occurs defines the value ofnC* . Then, compar-
ing the free energy of the glassy minimum with that of t
liquid minimum obtained for the same realization of the d
order, it is easy to determine the value ofnB* —this is the
value ofn* at which the two free energies are equal.

The determination of the appropriate starting glassy m
mum is nontrivial. Glassy minima forsÞ0 are obtained by
continuation from those of the pure system (s50). One may
think that the best choice would be to take the glassy m
mum with the lowest free energy at the starting (n* ,s) point.
In practice, this is difficult to implement because an exha
tive enumeration of all the glassy minima is computationa
very hard. The glassy minimum with the lowest free ener
at a particular point in the (n* ,s) plane does not in genera
continue to have the lowest free energy as the values ofn*
ands are changed. Also, in the pure system all the confi
rations obtained by applying one of the symmetry operati
of the computational mesh to the density configuration a
particular glassy minimum also correspond to local minim
with exactly the same free energy. ForsÞ0, all these
symmetry-related minima have to be considered separa
because the presence of the random potential destroys
symmetries present in the pure limit.

We have not found a rigorous solution to this proble
Instead, we first carried out an exploratory study of how
locations of theB andC lines in the phase diagram depen
on the choice of the initial glassy minimum. The followin
choices were considered in our initial exploration:~a! one of
the low-lying s50 glassy minima, continued to finites; ~b!
beginning with the same starting configuration as in~a! and a
specific realization of the random variables$Vi%, minimize
the random potential energy@the last term in Eq.~2.5!# with
respect to all symmetry operations of the computatio
mesh. This attempts to find the configuration that minimiz
among all the symmetry related ones, the contribution of
random potential to the free energy but it is not quite rig
ous because the minimization is performed using the va
of $r i% at the s50 minimum, and ~c! the glassy minima to
which the system moves when the density is increased ab
the A line, as discussed in Sec. III B.

The outcome of this study is that the locations of theB
andC lines in the (n* ,s) plane are not sensitive to the choic
of the glassy minimum as long as it is one of the low-lyin
minima. ~Even when we have deliberately or accidenta
chosen a ‘‘wrong,’’ non-low-lying minimum, we have foun
that the system often spontaneously makes a glass-to-g
transition@30# to a low-lying minimum as one decreasesn*
above theB line.! The variation of the values ofnB* andnC*
for different choices of the glassy minimum is comparable
the uncertainty of these values~shown by the error bars in
Figs. 1 and 2! arising from sample-to-sample variations. Th
results described below were obtained~unless otherwise in-
dicated! from runs in which a low-lying glassy minimum
obtained from continuation of one ats50 was taken to be
the initial state for the density-lowering run.

For relatively small values ofs, theA, B, andC lines are
well separated from one another and the signatures of thC
instability are very easy to detect: they are similar to t
discontinuities shown in Figs. 5 and 6. However, as the va
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of s is increased, these three lines begin to approach e
other. As shown in Figs. 1 and 2, the separation betw
lines A and B decreases rather rapidly with increasings,
while the separation between linesB andC decreases more
slowly. Finally, nears51, these three lines appear to mer
with one another for theL512 system. ForL525 ~and also
for L515), the separation between them does not exceed
combined error bars, but separateB andC transitions can be
detected in most~not all! realizations of the disorder, as ex
plained in detail below. At largers, it becomes increasingly
difficult to resolve these three lines. Since linesA and C
represent, respectively, the limits of stability of the liqu
and glassy minima and lineB corresponds to the first-orde
liquid-to-glass transition, a merging of these three lines s
gests that this transition becomes continuous ass is increased
beyond a ‘‘tricritical’’ value that would be close to unity fo
the L512 commensurate sample and somewhat larger
the incommensurate samples. Another possibility is that
first-order liquid-to-glass transition disappears beyond
critical point nears51.

To examine the behavior in this region more closely,
have carried out several numerical experiments in which
value of n* is ‘‘cycled’’ through the liquid-to-glass transi
tion, keepings fixed at values close to unity. In this way, th
three lines are detected in the same ‘‘run.’’ These numer
experiments are similar to simulations of hysteresis in m
netic phase transitions. We start with the liquid minimum
a low value ofn* ~below lineC), and increasen* in small
steps, keepings fixed. The liquid minimum is thus followed
to higher densities until it undergoes a rapid change signa
a possible instability. The process of increasingn* in small
increments is continued for a few more steps, and then
local minimum so obtained is followed to lower densities
decreasingn* in small steps. This is continued until th
starting value ofn* is reached. If the liquid-to-glass trans
tion at the chosen value ofs is first-order with the three
densitiesnA* , nB* , andnC* separated from one another, the
the cycling experiment described above should exhibit c
evidence of hysteresis. This is indeed what we find, for
system sizes and at every run, if the value ofs is lower than
a certain critical value. A typical example is shown in Fig.
which shows the results for aL512 sample ats50.8. The
hysteresis in the free energy andgmax ~shown in the inset! is
evident: the liquid minimum becomes unstable atnA*
.0.735 asn* is increased from a low initial value, while th
glassy minimum found forn* .nA* can be continued all the
way down to nC* .0.720 before it becomes unstable. T
liquid-to-glass transition occurs atnB* .0.725 where the two
branches of the free energy cross. The same situation oc
for the incommensurateL525 system except that the value
of the transition points arenA* .0.79, nB* .0.73, andnC*
.0.71 fors50.8. The results atL515 are, within error bars
the same as those forL525 at this value ofs.

The behavior in Fig. 7 is to be contrasted with that sho
in Fig. 8 that displays the results of the cycling experime
on aL512 sample ats51. The distribution of the random
variables $r i% in this sample is the same as that of F
7—only the strength of the disorder is changed. In this fi
ure, there is no evidence of hysteresis in the free energy.
plot of gmax shown in the inset exhibits a sharp change n
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n* 50.706 for both increasing-n* and decreasing-n* runs,
and the results for the two runs are nearly identical. Giv
the rounding off errors associated with the numerical pro
dures we use, the small differences between the increas
n* and decreasing-n* values ofgmax are likely to be insig-
nificant. We, therefore, conclude that at least within the re
lution of our numerical procedures, there is no hysteresi
s51.0 for thisL512 sample. This implies that the first-orde
transition found in this sample fors50.8 either becomes a
continuous one or disappears as the value ofs is increased to
1.0. The sharp change in the value ofgmax nearn* 50.706
suggests that the transition persists as a continuous one
investigate this further, we have calculated the derivatives

FIG. 7. Hysteresis and discontinuities across the liquid-to-gl
transition at small values ofs. In the main plot, the dimensionles
free energy of the stable minimum is plotted vs density as
cycles across theA, B, andC lines as explained in the text. Hyste
esis is clearly observed. In the inset, the quantitygmax is shown.
The results shown are ats50.8 for a commensurateL512 system,
but the same behavior is found in this range ofs for incommensu-
rate systems.

FIG. 8. Cycling across the liquid-to-glass transitions fors51 in
a L512 commensurate system. The same quantities are plotte
in Fig. 7, and now no hysteresis is seen. Incommensurate sys
exhibit the same behavior at somewhat larger values ofs, but not in
all runs.
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gmax, rmax, andr tot[( ir i with respect ton* in the region
where these quantities change rapidly. We have also ex
ined the behavior ofl as a function ofn* in this region.
Results for these quantities are shown in Fig. 9 for the sa
sample as that of Fig. 8. All the derivatives exhibit sha
peaks atn* 50.706, and the value ofl goes through a mini-
mum that is very close to zero at the same point. Th
results strongly suggest the occurrence of a continuous p
transition atn* 50.706. However, due to the limited resolu
tion of our numerical calculations and the smallness
sample size, we cannot rule out the possibility that the
served behavior reflects a sharp crossover rather than a
phase transition. Similar results are found for larger value
s. The continuation of the ‘‘transition line’’ beyond the poin
where the linesA, B, andC come together is determined b
locating the value ofn* at which the eigenvaluel reaches a
minimum. The value ofs at which theA, B, and C lines
merge and the hysteresis in the cycling experiment dis
pears is found to be weakly dependent on the realizatio
the disorder—it varies between 1.0 and 1.2 for the five d
ferentL512 samples studied.

For the incommensurate samples, the situation is so
what more ambiguous. ForL525, the same cycling proce
dure shows that the transition is clearly hysteretic for all ru
with s<1.1. For larger values ofs, an increasingly larger
percentage of the runs is nonhysteretic~i.e., the results for
bF look like those in Fig. 8!, while the other runs display a
behavior similar to that in Fig. 7 but with much small
discontinuities. Ass is increased beyonds51.8, it becomes,
in most of the ‘‘runs,’’ impossible to distinguish the disco
tinuities, if any, from computer noise. Thus, it is possible
this case to plot separateA, B, andC lines all the way up to
s51.8. This accounts for the obvious difference in this
spect between Figs. 1 and 2. The results forL515 are quite
consistent with those forL525, but the smaller system siz
makes all interpretations more difficult. Thus, it is more d
ficult to identify the precise position of any well-defined tr
critical point ~or a critical point! from the results for the
incommensurate samples. One might alternatively say
these incommensurate results are indicative of a crossov
is not possible to completely rule out that the behavior

FIG. 9. Derivatives with respect ton* of the quantitiesr tot ,
rmax, andgmax, as defined in the text, plotted as functions ofn*
across a putatively continuous liquid-glass transition in aL512
sample withs51.0. The three quantities have sharp peaks atn*
50.706. The eigenvaluel, also defined in the text, shows a pr
nounced dip at the same point.
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different for the commensurate and incommensur
samples, or that the poorer resolution of the smaller sam
masks discontinuous behavior in some of the largers runs.

D. Crystallization

To study how the crystallization densitynD* changes ass
is increased from zero, we start with the crystalline minimu
obtained for a commensurate sample ats50 and a large
value ofn* . We then find the symmetry related configuratio
that minimizes the random potential energy for a particu
realization of the disorder and continue this configuration
the desired value ofs. This configuration is then continued t
smaller values ofn* by decreasingn* in small steps. The
crystalline minimum turns out to be quite robust und
changes of the density and the strength of the disorder—
minimization routine converges rather quickly to the ne
minimum as the value ofn* or s is changed by a smal
amount. While decreasing the value ofn* , we keep track of
the free energy of the crystalline minimum and find the va
of n* at which this free energy crosses that of the liqu
minimum for the same realization of the disorder. For re
tively small values ofs, the crossing point determines th
value ofnD* for the chosen value ofs. Typical results for the
crossing of these two free energies are shown in Fig. 10.
results for lineD, averaged over five realizations of the di
order, are shown in Fig. 1. The crystallization transition
strongly first order for all values ofs. In the smalls regime,
the crystalline minimum has the lowest free energy for
densities above lineD. Therefore, the linesA, B, andC do
not have any equilibrium thermodynamic significance in t
regime for a commensurate system: the liquid-to-glass tr
sition at line B can be observed only if the crystallizatio
transition at lineD is avoided, e.g., by rapid compression.

As shown in Fig. 1, the crystallization line crosses t
liquid-to-glass transition line at a point that is very close
that where the linesA, B, and C seem to come together
Beyond this point, lineD is determined by the crossing o
the free energies of glassy and crystalline minima. The p
cedure is quite analogous to that shown in Fig. 10. This li
therefore, represents a first-order transition between crys
line and glassy states in this regime. The phase diagram
Fig. 1 implies that the system undergoes a first-order liqu

FIG. 10. Free energy crossing at the crystallization transiti
The solid and dotted lines represent, respectively, the dimension
free energies of the crystalline and liquidlike minima of aL512
sample withs50.6. Their crossing point is the densitynD* (s).
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to-crystal transition for small values ofs as the density is
increased from a low initial value. However, as the value
s is increased above a critical value~which is close to unity
for the L512 system!, the transition asn* is increased be-
comes a continuous liquid-to-glass transition~or perhaps a
sharp crossover!. The glassy state then undergoes a fir
order transition to the crystalline state as the density is
creased further. The observed curvature of lineD for larges
also implies that the system would undergo a first-or
crystal-to-glass transition as the strength of the disorde
increased at constant density.

IV. SUMMARY AND DISCUSSION

We have mapped out the mean-field phase diagram
hard sphere system in the presence of a quenched ran
potential by numerically studying the evolution of th
minima of a model free energy as a function of the dens
n* and the strengths of the disorder. The phase diagram
the (n* ,s) plane exhibits liquid, glassy, and crystalline~for
commensurate samples! phases. The standard first-ord
crystallization transition that occurs ats50 upon increasing
n* retains its character at smalls as a first-order transition
from a weakly inhomogeneous liquid phase to a nearly cr
talline state. We also find for all samples a liquid-to-gla
transition in the metastable, ‘‘supercompressed’’ regim
This transition is first order for smalls, but within the reso-
lution of our results, it appears to become continuous ass is
increased beyond a critical value, which is larger for inco
mensurate samples. The crystallization line crosses the g
transition line near the point where the glass transition
comes continuous. Thus, the first-order crystallization tra
tion found for smalls as the density is increased from a sm
initial value is replaced, at sufficiently larges, by a continu-
ous liquid-to-glass transition. The phase diagram also sh
a first-order crystal-to-glass transition ass is increased at
constantn* .

The qualitative features of our phase diagram~i.e., its
topology, the shapes of the transition and instability lin
and the nature of the transitions! are all identical to those
found in the analytic study@17# of the same system@31#.
Two of our most important results, the change in the nat
of the liquid-to-glass transition beyond a certain value os
and the crossing of the crystallization and glass transi
lines above this critical value, were also found in the analy
calculation. This similarity between the results of two stud
using extremely different methodologies strongly sugge
that the qualitative features of our phase diagram are cor
at least at the mean-field level. The quantitative differen
that exist between the numerical and replica results, i.e.,
all the transition and instability lines in our phase diagra
lie at substantially lower densities than those obtained in
analytic study, have the same origin as the discrepancy
tween ours50 results and those of molecular dynamics@32#
of the pure hard-sphere system. As noted before@25,28#,
these differences result from the discretization of the fr
energy functional. The use of a simple cubic mesh of spac
h;0.2s in the discretization procedure increases the rela
stability of inhomogeneous local minima of the free ener
and thus leads to substantially lower values for the dens
at which crystallization and the glass transition occur. On
f
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other hand, the quantitative differences between our res
in Fig. 1 and those in Fig. 2 appear to arise chiefly from
incommensurability of the latter sample, rather than from
slight difference in the values ofh, or even from that in the
values ofL: we have found negligible sample-size effects
comparing theL515 results to those atL525 at the same
value of h. The effects of discretization would presumab
disappear forh much smaller than the width of the approx
mately Gaussian density distributions near the points wh
the particles are localized at an inhomogeneous minimum
the continuum free-energy functional. Unfortunately, a n
merical calculation with such small values (;0.01s) of h
would require dealing with a very large number~of the order
of 106) of variables$r i%. This appears to be computational
difficult, as mentioned in Sec. II.

Possible effects of fluctuations are not included in o
mean-field phase diagram. The first-order crystallizat
transition should not be strongly affected by fluctuation
The situation is more complex for the glass transition b
cause there are a large number of glassy local minima. W
fluctuations are included, the system might visit a large nu
ber of different glassy minima during its evolution over lon
times, and thus behave like a liquid in that the partic
would no longer be localized in space and the time-avera
local density would be only weakly inhomogeneous. A tr
thermodynamic glass transition would occur only if the ch
acteristic time scale for transitions between glassy mini
diverges in the thermodynamic limit. Whether this happe
in the pure system is still a highly controversial issue. F
ther investigations of this question for systems of particles
the presence of quenched disorder would be very wo
while. The presence of multiple low-lying glassy minima
the free energy is expected to lead to slow relaxation eve
no thermodynamic glass transition is present. Therefore,
natures of the mean-field glass transition found in our stu
should show up in the dynamics of the system even if
thermodynamic glass transition occurs when fluctuations
taken into consideration.

Our density-disorder phase diagram exhibits qualitat
similarities to the field-temperature phase diagram of so
high-Tc superconductors in the presence of random po
pinning. For a system of vortices in the mixed phase
type-II superconductors, the temperatureT plays the role of
the densityn* of the hard sphere system—increasingT is
analogous to decreasingn* . As pointed out in the Introduc-
tion, increasing the magnetic fieldH is believed@11# to in-
crease the effective strength of the pinning disorder. Us
these analogies, one can translate, in a very crude and q
tative sense, our phase diagram in the (n* ,s) plane to a
phase diagram for superconductors in the (T,H) plane. Then,
our result that the crystallization transition at weak disord
is replaced by a continuous glass transition ass is increased
translates into the statement that for superconductors,
first-order liquid to Bragg glass transition at low field
should change over to a continuous glass transition asH is
increased. As noted in the Introduction, this is the behav
found in experiments on a family of high-Tc superconduct-
ors. The phase diagram of these superconductors also e
its a Bragg glass to amorphous solid transition asH is in-
creased at lowT. This is analogous to the crystal-to-gla
transition found in our phase diagram ass is increased at
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constant density. Further evidence in support of this anal
is provided by a recent numerical study@34# that suggests
that the high-field, low-temperature phase of high-Tc super-
conductors~the so-called vortex glass phase! is very similar
to a structural glass. In view of these similarities, an ext
sion of our calculation to a system of pancake vortices
layered superconductors with random point pinning, us
the appropriate form of the free energy, would be of obvio
interest.

We are not aware of any experimentally studied syst
that provides a direct and precise physical realization of
model studied here. Colloidal suspensions in the presenc
a time-independent, spatially random external potential~pro-
ue
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duced, for example, by suitably configured laser fields@33#!
would probably provide a close approximation to our mod
Since simple liquids with short-range pair potentials that
strongly repulsive at short distances behave in many w
like a hard-sphere liquid, our calculation is expected to
ply, at least qualitatively, to such systems also.
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